Assignment 7

1. Apply two steps of Newton's method to find a simultaneous root of the following system of two algebraic equations starting with the approximation $x=y=0.5$.

$$
\begin{array}{r}
x^{2}+4 y^{2}-x+y-1=0 \\
3 x^{2}+2 y^{2}+x-y-2=0
\end{array}
$$

2. Apply one step of Newton's method to find a simultaneous root of the following system of three algebraic equations starting with the approximation $x=y=-0.5$ and $z=1$.

$$
\begin{array}{r}
3 x^{2}+x-x y-2 y-1=0 \\
2 x+2 y^{2}+x y-y+z-y z-2=0 \\
y-2 z+y z+3 z^{2}=0
\end{array}
$$

3. Apply one step of Newton's method to find a simultaneous root of the following system of two algebraic equations starting with the approximation $x=1$ and $y=1.5$.

$$
\begin{aligned}
& \sin (x)+2 \cos (x y)=1 \\
& \sin (x y)-2 \cos (y)=1
\end{aligned}
$$

4. Recall the difference between Newton's method and the secant method for a single algebraic equation in a single variable. Suppose instead, you did not have the derivative. How would you generalize the secant method for two algebraic equations in two variables, or n algebraic equations in n variables? Recall that a plane is defined by three points.
5. Suppose you have the ordinary differential equation $y^{(1)}(t)=\sin (y(t))$ and you know that $y(0)=1$ and $y(0.1)=1.086355758991046$. Use a cubic spline to approximate $y(0.05)$.
6. Suppse you knew that $y(a)=y_{a}, y(b)=y_{b}, y^{(1)}(a)=y_{a}{ }^{(1)}, y^{(1)}(b)=y_{b}{ }^{(1)}, y^{(2)}(a)=y_{a}{ }^{(2)}, y^{(2)}(b)=y_{b}{ }^{(2)}$. Write down the system of linear equations that would find the quintic (degree five) polynomial that satisfies these conditions.
7. Using Euler's method, approximate $y(1)$ with $h=0.2$ and again with $h=0.1$ for the initial-value problem defined by

$$
\begin{aligned}
y^{(1)}(t) & =2 y(t)+t-1 \\
y(0) & =1
\end{aligned}
$$

8. In Question 7, you approximated $y(0.2)$ with $h=0.2$, and $y(0.1)$ with $h=0.1$. The correct solutions to sixteen significant digits are $y(0.2)=1.268868523230952$ and $y(0.1)=1.116052068620128$. Show that the error of one step of Euler's method is $\mathrm{O}\left(h^{2}\right)$ by showing that the error of your approximation at $t=0.1$ is approximately one quarter the error at $t=0.2$.
